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Abstract: - In technical practice often occur higher order processes when a design of an optimal controller leads 
to complicated control algorithms. One of possibilities of control of such processes is their approximation by 
lower-order model with time-delay (dead time). The contribution is focused on a choice of a suitable 
experimental identification method and a suitable excitation input signals for an estimation of process model 
parameters with time-delay.  One of the possible approaches to control of time-delay processes is application of 
model-based predictive control (MPC) methods. The further contribution is design of an algorithm for 
predictive control of high-order processes which are approximated by second-order model of the process with 
time-delay. The controller was tested and verified by control of several simulation models and a model of a 
laboratory heat exchanger.  
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1 Introduction 
Some technological processes in industry are 
characterized by high-order dynamic behaviour or 
large time constants and time-delays. Time-delay in 
a process increases the difficulty of controlling it. 
However using the approximation of higher-order 
process by lower-order model with time-delay 
provides  simplification of the control algorithms. 
Let us consider a continuous-time dynamical linear 
SISO (single input ( )tu   – single output ( )ty ) system 
with time-delay dT . The transfer function of a pure 

transportation lag is sTde −   where s is a complex 
variable. Overall transfer function with time-delay is 
in the form   

( ) ( ) dT s
dG s G s e−=                                                (1) 

where ( )sG  is the transfer function without time-
delay. Methods and applications of control of time-
delay systems are for example in [1], [2], [3].    

Processes with time-delay are difficult to control 
using standard feedback controllers. One of the 
possible approaches to control processes with time 
delay is predictive control [4], [5], [6]. The 
predictive control strategy includes a model of the 
process in the structure of the controller. The first 
time-delay compensation algorithm was proposed 
by [8]. This control algorithm known as the Smith 
Predictor (SP) contains a dynamic model of the 

time-delay process and it can be considered as the 
first model predictive algorithm. An alternative 
method implemented to analyze heat diffusion 
system with time–delay, are the integer and 
fractional order controllers with a Smith Predictor 
controller [9].  

Model Predictive Control (MPC) or only 
Predictive Control is one of the control methods 
which have developed considerably over a few past 
years. Predictive control is essentially based on 
discrete or sampled models of processes. 
Computation of appropriate control algorithms is 
then realized namely in the discrete domain. 

The term Model Predictive Control designates a 
class of control methods which have common 
particular attributes [10], [11].  
• Mathematical model of a system is used for 

prediction of future systems output.  
• The input reference trajectory in future is 

known. 
• A computation of the future control sequence 

includes minimization of an appropriate 
objective function (usually quadratic one) with 
the future trajectories of control increments and 
control errors. 

• Only the first element of the control sequence is 
applied and the whole procedure of the objective 
function minimization is repeated in the next 
sampling period.  
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The principle of MPC is shown in Fig. 1, where 
( )tu  is the manipulated variable, ( )ty is the process 

output and ( )tw  is the reference signal, N1, N2 and 
Nu are called minimum, maximum and control 
horizon. This principle is possible to define as 
follows: 
 
 
 

k+1 k-1 k 

y(t) 
ˆ ( )y t  

w  (t) 

past future 

u(t) 

time 

N1 

k+Nu 

Nu 
N2 

k+N2 

 
Fig. 1. Principle of MPC 
 
1. The process model is used to predict the future 

outputs ( )tŷ  over some horizon N. The 
predictions are calculated based on information 
up to time k and on the future control actions 
that are to be determined. 

2. The future control trajectory is calculated as a 
solution of an optimisation problem consisting 
of an objective function and constraints. The 
cost function comprises future output 
predictions, future reference trajectory, and 
future control actions. 

3. Although the whole future control trajectory was 
calculated in the previous step, only first 
element ( )ku  is actually applied to the process. 
At the next sampling time the procedure is 
repeated. This is known as the Receding 
Horizon concept.   

Theoretical research in the area of predictive 
control has a great impact on the industrial world 
and there are many applications of predictive 
control in industry. Its development has been 
significantly influenced by industrial practice. At 
present, predictive control with a number of real 
industrial applications belongs among the most 
often implemented modern industrial process 
control approaches. First predictive control 
algorithms were implemented in industry as an 
effective tool for control of multivariable industrial 
processes with constraints more than twenty five 
years ago. The use of predictive control was limited 

on control of namely rather slow processes due to 
the amount of computation required. At present, 
with the computing power available today, this is 
not an essential problem. A fairly actual and 
extensive surveys of industrial applications of 
predictive control are presented in [12], [13], [14].  

High-order processes are largely approximated 
by the FOTD (first-order-time-delay) model. The 
aim of the paper is implementation of a predictive 
controller for control of high-order processes which 
are approximated by second-order model with time 
delay of two steps. This model approximates the 
higher order dynamics more accurately than the first 
order time delay model whilst design of control 
algorithms is still quite simple. The designed 
controller was tested and verified by control of 
several simulation models and a model of a 
laboratory heat exchanger. 

The paper is organized as follows: section 2 
describes identification of time-delay processes; 
section 3 presents design and implementation of 
predictive control; section 4 introduces computation 
of predictor for time-delay systems; section 5 gives 
the simulation results; section 6 contains 
experimental results and finally section 7 concludes 
the paper.  

 
2 Identification of Time-Delay 
Processes 
In this paper, the time-delay model is obtained 
separately from an off-line identification using the 
least squares method (LSM). The measured process 
output ( )ky  is generally influenced by noise. These 
nonmeasurable disturbances cause errors e in the 
determination of model parameters and therefore 
real output vector is in the form  

 = +y FΘ e                                                        (2)                    

It is possible to obtain the LSM expression for 
calculation of the vector of the parameter estimates  

( ) 1ˆ −
= T TΘ F F F y                                                (3) 

The matrix F has dimension (N-n-d, 2n) and rank 
2, the vector y (N-n-d) and the vector of parameter 
model estimates Θ̂ (2n). N is the number of samples 
of measured input and output data, n is the model 
order, d is a number of time-delay steps. 

Equation (3) serves for calculation of the vector 
of the parameter estimates Θ̂  using N samples of 
measured input-output data. The individual vectors 
and matrices in Equations (2) and (3) have the form  
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1 2 1 2
T

n n
ˆ ˆ ˆˆ ˆ ˆ ˆa a a b b b⎡ ⎤= ⎣ ⎦Θ L L                 (4)  

( ) ( ) ( )1 2T y n d y n d y N= + + + +⎡ ⎤⎣ ⎦y L          (5) 

( ) ( ) ( )1 2T ˆ ˆ ˆe n d e n d e N= + + + +⎡ ⎤⎣ ⎦e L            (6) 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1
1 2

1 2

1 1
1 2

1 2

y n d y n d y d
y n d y n d y d

y N y N y N n

u n u n u
u n u n u

u N d u N d u N d n

⎡ − + − + − − +
⎢− + + − + − +⎢= ⎢
⎢
− − − − − −⎢⎣

− ⎤
⎥+ ⎥
⎥
⎥

− − − − − − ⎥⎦

F

L

L

M M L M

L

L

L

M M L M

L

 

                                                                               (7) 

Most of higher-order industrial processes can be 
approximated by a model of reduced order with pure 
time-delay. Let us consider the following second 
order linear model with a time-delay  

( ) ( )
( )

1 1 2
1 1 2

1 21
1 21

d d
d

B z b z b z
G z z z

a z a zA z

− − −
− − −

− −−

+
= =

+ +
              (8)         

The term z-d represents the pure discrete time-
delay. The time-delay is equal to 0dT   where 0T  is 
the sampling period.  

Our experience proved that quality of system 
identification when the higher-order process is 
identified by the lower-order model is very 
dependent on the choice of an input excitation signal 
( )ku . The best results were achieved using a 

Random Gaussian Signal (RGS).  
Let us consider that model (8) is the 

deterministic part of the stochastic process described 
by the ARX (regression) model 

 
( ) ( ) ( )

( ) ( ) ( )
1 2

1 2

1 2

1 2 s

y k a y k a y k

b y k d b y k d e k

= − − − − +

+ − − + − − +
         (9) 

where ( )kes  is the non-measurable random 
component. The vector of parameter model 
estimates is computed by solving equation (3) 

( ) 1 2 1 2
ˆ ˆˆ ˆ ˆT k a a b b⎡ ⎤= ⎣ ⎦Θ                                     (10) 

and is used for computation of the prediction output. 

( ) ( ) ( )
( ) ( )

1 2

1 2

1 2

1 2

ˆ ˆ ˆy k a y k a y k
ˆ ˆb u k d b u k d

= − − − − +

− − + − −
                     (11) 

The quality of identification can be considered 
according to error, i.e. the difference between the 
measured and modeled value of the systems output 

( ) ( ) ( )ˆ ˆe k y k y k= −                                             (12) 

In this paper, a suitable choice of the number of 
time-delay steps was performed according to the 
error. The LSM algorithm (3) – (7) is computed for 
several numbers of time-delays steps and a suitable 
time-delay is chosen according to quality of 
identification based on the prediction error (12). 
  
 
2.1 Stable Process  
Let us consider the following stable fifth order 
linear system 

( )5 5 4 3 2

2 2( )
5 10 10 5 11

AG s
s s s s ss

= =
+ + + + ++

      (13) 

The system (13) was identified by the discrete 
model (11) using off-line LSM (3) – (6) for different 
numbers of time-delay steps. As the input signal 
was used the Random Gaussian Signal (RGS). A 
criterion of the identification quality is based on 
sum of squares of error  

( ) ( )2
2

ˆ
1

ˆ
N

e
k

J d e k
=

= ∑                                              (14) 

This criterion evaluates accuracy of the 
identification process. From Fig 2. , it is obvious 
that value of the criterion (14) decreases with 
increasing number of time-delay steps d. This is 
caused by the fact that the increasing of the number 
of time-delay steps improves estimation of the static 
gain 

1 2

1 2

ˆ ˆ
ˆ

ˆ ˆ1g
b b

K
a a
+

=
+ +

                                                 (15) 

The difference between estimates of the static 
gain gK̂  of the discrete model (8) and the 
continuous-time model (13) plays an important role 
for the quality of identification because the 
identification time was relatively long    (300 s) with 
regard to the response time (about 15 s).  

The system was identified by the following 
model 
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( )
1 2

1
1 2

0 0424 0 0296
1 1 6836 0 7199

d
A

. z . zG z z
. z . z

− −
− −

− −

− +
=

− +
                 (16) 

Comparisons of step responses of continuous-
time (13) and discrete models (16) with sampling 
period 0 0.5 sT =   for different numbers of time-
delay steps d are shown in Figs. 3-5, where yc is the 
step response of the model (13) and yd are step 
responses of  the discrete model (16) for individual 
numbers of time-delay steps d. 

From Figs. 2-5 it results that a suitable model for 
the design of the predictive controller is the model 
(13) with   d = 2. Its structure is simple and it 
relatively well approximates the dynamic behaviour 
of the continuous-time model (16). 
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Fig. 2. Criterion of quality identification for 
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Fig. 3. Comparison of step responses yc, yd for d =0 
(process (13)) 
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Fig. 4. Comparison of step responses yc, yd for d =2 
(process (13)) 
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Fig. 5. Comparison of step responses yc, yd for d =3 
(process (13)) 

 

 2.2 Stable Non-Minimum Phase Process 
Let us consider the following fifth-order linear 
system with non-minimum phase  

( )
5 4 3 2

2 1 5
( )

5 10 10 5 1B

s
G s

s s s s s
−

=
+ + + + +

                     (17) 

The process (17) was identified by the model (8) 
with a time-delay d=2 and sampling period sT 5,00 = . 
The discrete model which was obtained from the 
model (17) by Z-transform is in the following form  

( )
1 2

1 2
1 2

0.7723 0.8514
1 1 6521 0 8514B

z zG z z
. z . z

− −
− −

− −

− +
=

− +

 
                  (18) 
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The comparison of the step responses of the 
continuous-time model (17) and the discrete model 
(18) is shown in Fig. 6. 
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Fig. 6. Comparison of step responses yc, yd for d =2 
(process (17)) 
 
3 Implementation of Predictive 
Control 
In this Section, GPC (General predictive control) 
will be briefly described. The GPC method is in 
principle applicable to both SISO and MIMO 
processes and is based on input-output models. The 
standard cost function used in GPC contains 
quadratic terms of (possible filtered) control error 
and control increments on a finite horizon into the 
future 

( ) ( ) ( ) ( ) ( )
uNN

i N i

ˆJ i y k i w k i i u k iδ λ Δ
= =

= ⎡ + − + ⎤ + ⎡ + − ⎤⎣ ⎦ ⎣ ⎦∑ ∑
2

1

2 2

1
1

 
(19) 

where  ( )iky +ˆ   is the process output of i steps in the 
future predicted on the base of information available 
upon the time k, ( )1+kw   is the sequence of the 
reference signal and ( )1−+Δ iku   is the sequence of 
the future control increments that have to be 
calculated. 

Implicit constraints on uΔ  are placed between Nu 
and N2 as  

( ) 21 0 uu k i , N i NΔ + − = < ≤                            (20)             

The parameters ( )iδ  and ( )iλ  are sequences 
which affect future behaviour of the controlled 
process. Generally, they are chosen in the form of 
constants or exponential weights, according to our 
requirements on control.  

3.1 Calculation of the Optimal Control 
The objective of predictive control is a computation 
of a sequence of future increments of the 
manipulated variable [ ]( ), ( 1),u k u kΔ Δ + K  so that the 
criterion (19) was minimized. For further 
computation, it is necessary to transform the 
criterion (19) to a matrix form.  

The output of the model (predictor) is computed 
as the sum of the free response 0y  and the forced 
response of the model ny  

0ˆ n= +y y y                                                     (21)                    

It is possible to compute the forced response as 
the multiplication of the matrix G (Jacobian of the 
model) and the vector of future control 
increments Δu , which is generally a priori unknown  

n Δ=y G u                                                              (22) 

where  

2 2 2 2

1

2 1

3 2 1

1 2 1

0 0 0
0 0

0

uN N N N N

g
g g
g g g

g g g g− − − +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

G

L

L

L

M M M O M

L
                 

(23)

 
is a matrix containing values of the step sequence. 

It follows from equations (21) and (22) that the 
predictor in a vector form is given by  

0ˆ Δ= +y G u y                                                          (24) 

and the cost function (19) can be modified to the 
form below 

( ) ( )
( ) ( )0 0

T T

T T

ˆ ˆJ λΔ Δ

Δ Δ λΔ Δ

= − − + =

= + − + − +

y w y w u u

G u y w G u y w u u       
(25)

 
where w  is the vector of future reference trajectory.                    

Minimisation of the cost function (25) now 
becomes a direct problem of linear algebra. The 
solution in an unconstrained case can be found by 
setting partial derivative of J with respect to Δu  to 
zero and yields   

( ) ( )
1

0
T TΔ λ

−
= − + −u G G I G y w                           (26) 

where the gradient g  and Hessian H  are defined as 

( )0
T T= −g G y w                                        (27) 

T λ= +H G G I                                                     (28) 

WSEAS TRANSACTIONS on SYSTEMS Marek Kubalčík, Vladimír Bobál

E-ISSN: 2224-2678 611 Issue 10, Volume 11, October 2012



Equation (26) gives the whole trajectory of the 
future control increments and such is an open-loop 
strategy. To close the loop, only the first element u , 
e. g. ( )Δu k  is applied to the system and the whole 
algorithm is recomputed at time k+1. This strategy 
is called the Receding Horizon Principle and is one 
of the key issues in the MBPC concept.  

If the first row of the matrix ( ) 1T Tλ
−

+G G I G  is 
denoted as  K  then the actual control increment can 
be calculated as 

 ( ) ( )0u kΔ = −K w y                           (29) 
 

 
4 Computation of Predictor 
An important task is computation of predictions for 
arbitrary prediction and control horizons. Dynamics 
of most of processes requires horizons of length 
where it is not possible to compute predictions in a 
simple straightforward way. Recursive expressions 
for computation of the free response and the matrix 
G in each sampling period had to be derived. There 
are several different ways of deriving the prediction 
equations for transfer function models. Some papers 
make use of Diophantine equations to form the 
prediction equations (e.g. [14]). In [10] matrix 
methods are used to compute predictions. We 
derived a method for recursive computation of both 
the free response and the matrix of the dynamics 
[15]. 
Computation of the predictor for the time-delay 
system can be obtained by modification of the 
predictor for the corresponding system without a 
time-delay. At first we will consider the second 
order system without time-delay and then we will 
modify the computation of predictions for the time-
delay system.  

 
4.1 Second Order System without Time-
Delay 
The model is described by the transfer function 

 ( ) ( )
( )1

1

2
2

1
1

2
2

1
11

1 −

−

−−

−−
− =

++

+
=

zA
zB

zaza
zbzb

zG                       (30)                 

( ) ( )1 1 2 1 1 2
1 2 1 21 ;A z a z a z B z b z b z− − − − − −= + + = +      (31) 

The model can be also written in the form  

( ) ( ) ( ) ( )kuzBkyzA 11 −− =                                       (32) 

A widely used model in general model predictive 
control is the CARIMA model which we can obtain 
from the nominal model (32) by adding a 
disturbance model 

( ) ( ) ( ) ( ) ( ) ( )knzCkuzBkyzA cΔ
+=

−
−−

1
11                     (33) 

where ( )knc   is a non-measurable random 
disturbance that is assumed to have zero mean value 
and constant covariance and the operator delta is 

11 −− z . Inverted delta is then an integrator. 
The polynomial ( )1−zC  will be further considered 

as ( ) 11 =−zC . The CARIMA description of the 
system is then in the form 

( ) ( ) ( ) ( ) ( )1 1 1 cA z y k B z u k n kΔ Δ− −= − +            (34) 
The difference equation of the CARIMA model 

without the unknown term ( )knc  can be expressed 
as:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1` 2 2

1 2

1 1 2 3

1 2

y k a y k a a y k a y k

b u k b u kΔ Δ

= − − + − − + − +

+ − + −

                                                      (35) 
It was necessary to compute three step ahead 

predictions in straightforward way by establishing 
of lower predictions to higher predictions. The 
model order defines that computation of one step 
ahead prediction is based on three past values of the 
system output. The three step ahead predictions are 
as follows  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 1` 2 2

1 2

1 1` 2 2

1 2

1 1` 2 2

1 2

ˆ 1 1 1 2

1
ˆ 2 1 1 1

1
ˆ 3 1 2 1

2 1

y k a y k a a y k a y k

b u k b u k

y k a y k a a y k a y k

b u k b u k

y k a y k a a y k a y k

b u k b u k

Δ Δ

Δ Δ

Δ Δ

+ = − + − − + − +

+ + −

+ = − + + − + − +

+ + +

+ = − + + − + + +

+ + + +

                                                      (36) 
The predictions after modification can be written 

in a matrix form 

( )
( )
( )

( )
( )

( )
( )
( )
( )

( )
( ) ( ) ( ) ( )

1 11 12 13 14

2 1 21 22 23 24

3 2 31 32 33 34

1

1 1 2 1
2

1 2 1 1 1 1 2 1 1 2

ˆ 1 0
1

ˆ 2
1 2

ˆ 3
1

0
1

1 1 1

y k
y k g p p p p

u k y k
y k g g p p p p

u k y kg g p p p py k
u k

b
u

b a b b

a a b a b a b b a b

Δ

Δ

Δ

Δ

⎡ ⎤
⎡ + ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎡ ⎤ −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ = + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ −⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥−⎣ ⎦
⎡ ⎤
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥

− + − + − − +⎢ ⎥⎣ ⎦

( )
( )

( ) ( )
( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( )
( )
( )
( )

1 1 2
2

1 1 2 1 1 2 2
3 2 2

1 1 1 2 2 1 1 2 2 1 1 2

2 2

2 1 2 1
2 2

2 1 1 2 2 2 1 1 2 2

1

1

1 1

1 2 1 1 1

1
1 1

2
1 1

1

k

u k

a a a

a a a a a a a

a a a a a a a a a a a a

y k
a b

y k
a a b a

y k
a a a a a b a a a b

u k

Δ

Δ

⎡ ⎤
+⎢ ⎥

+⎢ ⎥⎣ ⎦

⎡ − −
⎢

+ − + − − − +⎢
⎢

− + − − + − − + − + −⎢⎣
⎡ ⎤

⎤ ⎢ ⎥
−⎥ ⎢ ⎥

− − ⎥ ⎢ ⎥−⎥ ⎢ ⎥− + − − + − ⎥⎦ ⎢ ⎥−⎣ ⎦

                                                                   (37) 
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It is possible to divide computation of the 
predictions to recursion of the free response and 
recursion of the matrix of the dynamics. Based on 
the three previous predictions it is repeatedly 
computed the next row of the free response matrix 
in the following way: 

( ) ( )
( ) ( )
( ) ( )
( ) ( ) 142242134144

132232133143

122222132142

112212131141

1
1
1
1

papaapap
papaapap
papaapap
papaapap

+−+−=
+−+−=
+−+−=
+−+−=

                 

(38)

 
The first row of the matrix is omitted in the next 

step and further prediction is computed based on the 
three last rows including the one computed in the 
previous step. This procedure is cyclically repeated. 
It is possible to compute an arbitrary number of 
rows of the matrix. 

The recursion of the dynamics matrix is similar. 
The next element of the first column is repeatedly 
computed in the same way as in the previous case 
and the remaining columns are shifted to form a 
lower triangular matrix in the way which is obvious 
from the equation (37). This procedure is performed 
repeatedly until the prediction horizon is achieved. 
If the control horizon is lower than the prediction 
horizon a number of columns in the matrix is 
reduced. Computation of the new element is 
performed as follows: 

( ) ( )4 1 3 1 2 2 2 11g a g a a g a g= − + − +                           (39)  
 
4.2 Second Order System with Time-Delay 
The nominal model with two steps time-delay is 
considered as 
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(40)

 

The CARIMA model for time-delay system takes 
the form 

( ) ( ) ( ) ( ) ( )knkuzBzkyzA c
d +−Δ=Δ −−− 111

                (41) 

where d is the dead time. In our case d is equal to 2. 
In order to compute the control action it is necessary 
to determine the predictions from d+1 (2+1 in our 
case) to d+N2 (2+N2). 

The predictor (37) is then modified to 
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(42)

 

Recursive computation of the matrices is 
analogical to the recursive computation described in 
the previous section.  

The predictor can be also modified for arbitrary 
number of steps of time delay 
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5 Simulation Examples 
For simulation examples were chosen the systems 
introduced in the sections 2.1 and 2.2. Control 
responses are in the Figs. 7-10. 

 The tuning parameters that are lengths of the 
prediction and control horizons and the weighting 
coefficient λ were tuned experimentally. There is a 
lack of clear theory relating to the closed loop 
behavior to design parameters. The length of the 
prediction horizon, which should cover the 
important part of the step response, was in both 
cases set to N = 40. The length of the control 
horizon was also set to Nu = 40. The coefficient λ 
was taken as equal to 0,5. 
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Fig. 7. Control of the model (16) 

 
Fig. 8. Control of the model (16) – manipulated 
variable 

 
Fig. 9. Control of the model (18) 

 
Fig. 10. Control of the model (18) – manipulated 
variable  
 
Asymptotic tracking of the reference signal was 
achieved in all cases. The control of non-minimum 
phase system was rather sensitive to tuning 
parameters. Experimental tuning of the controller 
was more complicated in this case. 
 
6 Experimental Example 
The use of the predictive control algorithm is also 
demonstrated on a control of laboratory heat 
exchanger in simulation conditions. The laboratory 
heat exchanger [16] is based on the principle of 
transferring heat from a source through a piping 
system using a heat transferring media to a heat-
consuming appliance.  

 
6.1 Laboratory Heat Exchanger Description 
A scheme of the laboratory heat exchanger is 
depicted in Fig. 11 The heat transferring fluid (e. g. 
water) is transported using a continuously 
controllable DC pump (6) into a flow heater (1) with 
max. power of 750 W. The temperature of a fluid at 
the heater output T1 is measured by a platinum 
thermometer. Warmed liquid then goes through a 15 
meters long insulated coiled pipeline (2) which 
causes the significant delay in the system. The air-
water heat exchanger (3) with two cooling fans (4, 
5) represents a heat-consuming appliance. The 
speed of the first fan can be continuously adjusted, 
whereas the second one is of on/off type. Input and 
output temperatures of the cooler are measured 
again by platinum thermometers as T2, resp. T3. The 
laboratory heat exchanger is connected to a standard 
PC via technological multifunction I/O card. For all 
monitoring and control functions the 
MATLAB/SIMULINK environment with Real 
Time Toolbox was used. 
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Fig. 11. Scheme of laboratory heat exchanger  
 
6.2 Identification of Laboratory Heat 
Exchanger  
The dynamic model of the laboratory heat 
exchanger was obtained from processed input (the 
power of a flow heater P [W]) and output (the 
temperature of a T2 [deg] of the cooler) data. As the 
input signal was again used the Random Gaussian 
Signal. Following discrete transfer function for 
sampling period T0 = 100 s was identified 

1 2
1 2

1 2

0.1494 0.028( )
1 0.6376 0.1407

z zG z z
z z

− −
− −

− −

+
=

− −                    
(44) 

Control responses are in Figs. 12-13. 

 
Fig. 12. Control of the model of the laboratory heat 
exchanger 
 

 
Fig. 13. Control of the model of the laboratory heat 
exchanger-manipulated variable 

 
7 Conclusion 
The algorithm for control of the higher-order 
processes based on model predictive control was 
designed. The higher-order process was 
approximated  by the second-order model with time 
delay. The predictive controller is based on the 
recursive computation of predictions by direct use 
of the CARIMA model. The computation of 
predictions was extended for the time-delay system. 
The control of two modifications of the higher-order 
processes (stable and non-minimum phase) were 
verified by simulation. The laboratory heat 
exchanger system was identified by an experimental 
on-line method and its discrete model was also used 
for verification of the proposed predictive 
controller. The simulation verification provided 
good control results. The simulation experiments 
confirmed that predictive approach is able to cope 
with the given control problem.  
 
 
Acknowledgements: 
This article was created with support of Operational 
Programme Research and Development for 
Innovations co-funded by the European Regional 
Development Fund (ERDF),  national budget  of 
Czech Republic within the framework of the Centre 
of Polymer Systems project (reg. number: 
CZ.1.05/2.1.00/03.0111). 
 
 
 
 
 
 
 

WSEAS TRANSACTIONS on SYSTEMS Marek Kubalčík, Vladimír Bobál

E-ISSN: 2224-2678 615 Issue 10, Volume 11, October 2012



References: 
[1] T. Hashimoto, T. Amemiya, Stabilization of 

Linear Time-Varying Uncertain Delay Systems 
with Double Triangular Configuration, WSEAS 
Transactions on Systems and Control, Vol. 4, 
Issue 9, September 2009, pp. 465-475, 
ISSN:1991-8763. 

[2]  Bahador Makki, Babarak Makki,  Control 
Design for Uncertain Singularly Perturbed 
Systems with Discrete Time-Delay, WSEAS 
Transactions on Systems and Control, Vol. 6, 
Issue 12, December 2011, pp. 456-465, 
ISSN:1991-8763. 

[3] F. Neri, Agent Based Modeling under Partial 
and Full Knowledge Learning Settings to 
Simulate Financial Markets, AI 
Communications, IOS Press, 2012. 

[4] E. F. Camacho, C. Bordons, Model Predictive 
Control, Springer-Verlag, London, 2004. 

[5] J. Mikleš & M. Fikar, Process Modelling, 
Optimisation and Control. (Berlin: Springer-
Verlag, 2008). 

[6] A. M. Yousef, Model Predictive Control 
Approach Based Load Frequency Controller, 
WSEAS Transactions on Systems and Control, 
Vol. 6, Issue 7, July 2011, pp. 265-275, 
ISSN:1991-8763. 

[7] O. J. Smith, Closed control of loops. Chem. 
Eng. Progress, vol. 53, 1957, pp. 217-219. 

[8] R. R. Bitmead, M. Gevers, V. Hertz, Adaptive 
Optimal Control. The Thinking Man’s GPC, 
Prentice Hall, Englewood Cliffs, New Jersey,  
1990. 

[9] Jesus, S. Isabel, Machado, J.A. Tenreiro, 
Fractional Control of Heat Diffusion Systems, 
Nonlinear Dynamics, Springer, Vol. 54, Issue 
3, pp. 263-282, 2008.  

[10] J. A. Rossiter, Model Based Predictive 
Control: a Practical Approach (CRC Press, 
2003). 

[11] M. Morari, J. H. Lee, Model predictive control: 
past, present and future. Computers and 
Chemical Engineering, 23, 1999, 667-682. 

[12] S. J. Quin & T. A. Bandgwell, An overview of 
nonlinear model predictive control applications. 
Nonlinear Model Predictive Control (F. 
Allgöwer & A. Zheng, Ed.), (Basel – Boston – 
Berlin: Birkhäuser Verlag, 2000), 369-392. 

[13] S. J. Quin & T. A. Bandgwell, A survey of 
industrial model predictive control technology. 
Control Engineering Practice, 11(7), 2003, 
733-764. 

[14] W. H. Kwon, H. Choj, D.G. Byun, S. Noh,  
Recursive solution of generalized predictive 
control and its equivalence to receding horizon 

tracking control. Automatica, 28(6), 1992, 
1235–1238. 

[15] M. Kubalčík, V. Bobál, Techniques for 
Predictor Design in Multivariable Predictive 
Control, WSEAS Transactions on Systems and 
Control, Vol. 6, Issue 9, September 2011, 
pp.349-360, ISSN:1991-8763. 

[16] L. Pekař, R. Prokop, P. Dostálek, Circuit 
heating Plant Model with Internal Delays, 
WSEAS Transactions on Systems, Vol. 8, Issue 
9, September 2009, pp. 1093-1104, ISSN:1109-
2777. 

WSEAS TRANSACTIONS on SYSTEMS Marek Kubalčík, Vladimír Bobál

E-ISSN: 2224-2678 616 Issue 10, Volume 11, October 2012




